Limites de funções no Octave
Deseja aprender a calcular o limite de uma função no Octave? Neste guia, apresentaremos alguns exemplos práticos para auxiliá-lo.
Pré-requisitos. É essencial que você já tenha o software GNU Octave instalado em seu computador, juntamente com o módulo Symbolic.

Primeiramente, defina a variável independente x como símbolo da função.
Utilize o comando syms na linha de comando do Octave:
syms x
Vamos calcular o limite de x tendendo ao infinito ( x→∞) para a função f(x)=(x+1)/(x-1)
$$ \lim_{x \rightarrow + \infty} \frac{x+1}{x-1} $$
Digite o comando limit()
Insira o nome da função f(x) no primeiro parâmetro e o nome da variável x no segundo.
limit((x+1)/(x-1),x)
O Octave calcula o limite da função quando x→∞
ans = (sym) 1
Neste caso, o limite da função é 1.
O limite da função f(x)=(x+1)/(x-1) quando x→∞ é 1. $$ \lim_{x \rightarrow + \infty} \frac{x+1}{x-1} = 1 $$ 
Se o seu objetivo é determinar o limite quando x tende a menos infinito ( x→-∞ ), o procedimento é semelhante.
Basta adicionar `-inf` como terceiro parâmetro:
limit((x+1)/(x-1),x,-inf)
O resultado, neste caso, também é 1.
ans = (sym) 1
O limite da função f(x)=(x+1)/(x-1) quando x→-∞ é 1. $$ \lim_{x \rightarrow - \infty} \frac{x+1}{x-1} = 1 $$ 
Para avaliar o limite em um ponto específico, como x = 2, indique o valor desejado no terceiro parâmetro:
limit((x+1)/(x-1),x,2)
O resultado para este exemplo é 3.
ans = (sym) 3
O limite da função f(x)=(x+1)/(x-1) quando x→2 é 3. $$ \lim_{x \rightarrow 2} \frac{x+1}{x-1} = 3 $$ 
Se quiser calcular apenas o limite à direita, use o mesmo comando e digite 'right' no quarto parâmetro.
limit((x+1)/(x-1),x,1,'right')
O resultado é infinito (∞).
ans = (sym) ∞
O limite da função f(x)=(x+1)/(x-1) quando x→1+ é infinito. $$ \lim_{x \rightarrow 1^+} \frac{x+1}{x-1} = + \infty $$ 
Para calcular o limite à esquerda, use o mesmo comando e digite 'left' no quarto parâmetro.
limit((x+1)/(x-1),x,1,'left')
O resultado é menos infinito (-∞).
ans = (sym) -∞
O limite da função f(x)=(x+1)/(x-1) quando x→1- é menos infinito. $$ \lim_{x \rightarrow 1^-} \frac{x+1}{x-1} = - \infty $$

Esperamos que este guia tenha sido esclarecedor. Se encontrou utilidade e deseja aprofundar seus conhecimentos em Octave, continue nos acompanhando.